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Homodyne Statistics of a Vector in a Deformed
Hilbert Space
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In this paper we study homodyne statistics of some vectors on a deformed Hilbert
space.

1. INTRODUCTION

In a direct detection of statistics (Braunstein, 1990; Braunstein and Caves,
1990) in a single-mode photon field we count the number of photons in the field
mode of interest. The probability for countingphotons, called the photon count
distribution, is given by

Pr = (nlpln),

where|n) is a photon-number eigenstate gnds a density operator. However,
the direct detection cannot differentiate between the quadratures. All practical
phase-sensitive measurements require a reference beam, to act as a phase refer-
ence, commonly called the local oscillator. This beam has to be phase locked to
the input, otherwise it cannot provide a phase reference to distinguish between the
quadratures. If the local oscillator is resonant with the system field, that is has the
same frequency as the input, then this type of measurement is kndwemasglyne
detection. Alternatively, if the local oscillator is detuned, that is, frequency shifted
from the bandwidth of the system field, then this is knowheterodyneletection.
It is usually assumed that the observable measured by the homodyne detector is
one of the field quadratures and that by the heterodyne detector is both the field
quadratures.

The Q function defined by

Q) = (alpla),
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where|a) is a coherent state, provides a normalized phase-space probability dis-
tribution, Q(«)/m, for a quantum systenQ(«) can be measured in a series of
optimized simultaneous measurements of two orthogonal quadrature components,
because€Q(«)/m gives directly the statistics of such measurements. This means
that in optical frequency detectio@(«)/ gives the statistics of heterodyne de-
tection that measures orthogonal quadrature components of the statistics of a pair
of homodyne detectors whose local oscillators have relative phases corresponding
to measuring orthogonal quadrature components.

Homodyne detection is a well-established method for measuring phase-
senitive properties of light. Usual process is to superimpose a signal field with a
much stronger local oscillator. As a consequence the resulting field is rather strong
and can be detected with photodiodes. In such a scheme a photocurrentis produced,
which may be treated classically. Nevertheless, from the statistical properties of
this classical current one may get some insight into the nonclassical statistics of
light.

In recent years (Das, 1998, 1999a,b, 2001a,b), we have studied coherent
vectors, phase vectors, coherent phase vectors, kerr vectors, and squeezed vectors
in the setting of a deformed Hilbert space and plan to study here their direct,
heterodyne, and homodyne statistics in this generalized setting. Here, we adopt the
viewpoint of Vogel and coworker (1990, 1991) to study the statistics of different
vectors so far generalized.

The work is organized as follows. In section 2, we give a brief description of
preliminaries and notations. In section 3, we study the statistics of photon count. In
section 4, we describe the statistics of heterodyne detection. In section 5, to study
the statistics of homodyne detection we first find field strength vector and then, in
section 6, through various examples we describe homodyne statistics of different
vectors under consideration. Finally, we give a conclusion.

2. PRELIMINARIES AND NOTATIONS

We consider the set
Hgq = Hf 1 f(2)=) aZ" where > [n]! |a|* < oo},
where p] = =%, 0<q< 1

Forf,ge Hg, f(2) = Y pep@nz", 9(2) = Y o bnz" we define addition and
scalar multiplication as follows:

(f+9)@=f@+9@ =) (an+bn)2" @)
n=0
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and
(hof)@=2r0f(@) =) ra2". 2)
n=0

It is easily seen thatl, forms a vector space with respect to usual pointwise
scalar multiplication and pointwise addition by (1) and (2). We observei(@t=
Dm0 belongs toHq. _

Now we define the inner product of two functioh&z) = > a,z" andg(z) =
> bnz" belonging toHy as

(f,9) =) _[nl! &by 3
Corresponding norm is given by
1% = (f, £) = _[n]!|asl* < oo

With this norm derived from the inner product it can be shown thais a
complete normed space. Henldg forms a Hilbert space.

In a recent paper (Das, 1998, 1999a) we have proved that tl n tn=
0,1,2,3...} forms a complete orthonormal set. If we consider the following
actions onHy

Tfn =V [n] fn—l:
T fh = VIn+ 1] fapq,

whereT is the backward-shift and its adjoift* is the forward-shift operator on
Hq and fn(2) = % then we have shown (Das, 1998, 1999a) that the solution of
the following eigenvalue equation

4)

Tf, =af, 5)

is given by
S A 6
eq(lol?) 2:; T 6)

We call f, acoherent vectorin Hg.

3. STATISTICS OF PHOTON COUNT

In this section we shall describe statistics of direct detection, that is, the
probability distributionP, of different vectors under consideration.
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3.1. Incoherent Vectors
For the incoherent vectors (Das, 2001b) we take the density operator to be
=an|fn><fn|y (7)
n=0
with
pn>0 and anzl.
n=0
Then we calculate photon count distributiBpas
Py = (fna an) = Z pm(fn, fm)(fmy fn) = Pn.
m=0
3.2. Coherent Vector
For the coherent vectork, (Das, 1998),

1/2

= eq(la?)” Z \/[n_ ®)
We take the density operator to be
p=If)(fal,  a=lalg® ©
and calculate the photon count distributiBnas
Pn = (fn, pfn)
= (fn, [ fe)(fal fn)
= |(fn, fa)I?
oy-1le”"
= &(lal)” (10)

[t

3.3. Coherent Phase Vector
For a coherent phase vectty (Das, 1999b),

f5 = o(1p) 2 Zﬁ”\/ A=y, a
n=0 :
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with |8 < 1 and

> +0OD---(@"+[n-1
n=0 '
We take the density operator to be
p = 1Tp)(fsl (13)
and calculate the photon count distributiBin) as
Py = (fn: ,Ofn)
= (fn, | T5)(f5lTn)
= |(fn1 fﬂ)|2
_ +0D---(@"+[n-1
3.4. Kerr Vector
For a kerr vectop (Das, 1999b),
B = eéyN(Nfl) .,
=Y knfn, (15)
n=0
where
“y2 @ Lyn)(n]-1)
ko = eq(la) 2 e (16)

We take the density operator to be
p= o5 ok (17)
and calculate the photon count distributiBin) as
P(n) = (fn, pfn)
= (T [ ieq | fn)
= [(fn ¢X)["

2)71|O‘|2n

i _ 12
[n]' eéy[n]([n] 1)’ ) (18)

= €(lo|
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3.5. Squeezed Vector
For a squeezed vectdg (Das, 2001a),

J2n -1 [2n — 1)1
P e IE -

We take the density operator to be
p =1fs)(fs| (20)
and calculate the photon count distributiBn) as
P(n) = (fn, pfn)
= (fn, fs)(fs| fn)
= |(fn, fs)I?

20— 1T - g
-2 ] ey

4. STATISTICS OF HETERODYNE DETECTION

In this section we shall describe statistics of heterodyne detection, that is, the
probability distributionQ(«) /7 of different vectors under consideration.

4.1. Incoherent Vector

For the incoherent vectors (Das, 2001b) we take the density operator to be
PZanHn)(fnL (22)
n=0
with

ph=0 and > p=1

n=0
Then we calculate phase-space probability distribu@da)/= as

Qa)/m = 1/m(fa, pfa)
=1/ pal(fa, fa)l?

n=0

= 1/mey(lef?) 12 P

|2n

o (23)
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4.2. Coherent Vector
For the coherent vectorg, (Das, 1998),

_ 1/2
= eq(le Z W

We take the density operator to be
p=1fu)(ful o = lo'|€®
and calculate the phase-space probability distribu@ge) /7 as
Q)/m = 1/7(fa, pfa)
= 1/7(fo, [ fo) (frl fa)
= 1/7|(fa, fo)P?

= 1/meq(lal?) eq(la’]?)~Heg(@a) .

4.3. Coherent Phase Vector
For a coherent phase vectty (Das, 1999b),

fy = <I>(Iﬂ|2)1/2zﬁn\/(q HOD: @+ [n—3)
n=0 :

with |8] < 1 and

o gen@+[01) (@ +[n—1])
o(IBI%) = Z 1812 i

We take the density operator to be
o =|1g)(fsl
and calculate the phase-space probability distribu@dm) /= as
Qe)/m = 1/m(fa, pta)
= 1/m(fo, 1 Tp)(f5lfa)
= 1/7T|(faa fﬁ)|2
= 1/ ®(181°) "eq(la’) M @(@B)I®.

1637

(24)

(25)

(26)

(27)

(28)

(29)

(30)
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4.4. Kerr Vector
For a kerr vectopX (Das, 1999b),

%VN(N—l)f
o

X =
= Z kn fn,
n=0

where

an
kn — eq(|6¥|2)_1/2 eéy[n]([n )

We take the density operator to be
p =9 ) |
and calculate the phase-space probability distribu@dn)/z as

Q(Ot)/]‘[ = 1/7T(foupfat)
= 1/7(Ta, [y Yo | )
= V| (far )

= 1/meg(lal?)?

Z |ex] ZV[n]([n] y[?
ot ]

4.5. Squeezed Vector
For a squeezed vectdg (Das, 2001a),

W01 [2n -1t
fs = [Zl B [2n)!! ] Z Tent fan.

We take the density operator to be
p = |fs)(fsl
and calculate the phase-space probability distribu@de)/z as
Qa)/m = 1/m(fa, pfa)
= 17 (fia), fi) (fis)l fo)
= 1/7|(fa, )P

Das

(31)

(32)

(33)

(34)

(35)

(36)
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[2n ]H
=1/ o 2 2n
/meq(lel?)” [2 o =

o g2n [2n — 1]
Zm V= ‘ 37)

5. STATISTICS OF HOMODYNE DETECTION

Homodyne detection measures a quadrature component which is the field
operator
E(p) =e*T — €T,

whereg is a phase determined by the phase of the local oscillator. The statistics of
homodyne detection, thatis, the probability distributR(E (¢)) of the quadrature
component is given by

P(E(#)) = (E(¢), nE(9)),
whereE(¢) denotes an arbitrary vector satisfying the equation
(e*T —e?T*E(¢) =0

andp is a density operator. The operatdrsand T* are elaborated in section 2.
Itis called a field-strength vectd(¢). We shall find the probability distribution

at the particular field valu&(¢) = 0. Before we proceed to find the homodyne
statistics of various vectors under consideration we find the field-strength vector
at the originE(¢) =

5.1. Generation of Field-Strength Vector

~ The field-strength vector at the origii(¢) = O is generated by the action of
e T — é¢T* on an arbitrary vectofz in Hq (Das, 1998), which satisfies the
following equation

(eT —?T*)fz =0, (38)
where
(2= az' =) an/Inl fa(2), (39)
n=0 n=0
or

fﬁ = Zan\/ﬁfn
n=0
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We have
e T f,; = Ze"“’am/[n T f,
n=0
=3 e any/[nVIN fas
n=1
=Y e ay/[n+11V[n+ 111, (40)
n=0
and

T g =) elan/[n]IT" 1,

n=0
= 3 é¥anyfrllyin § 1 foes. (4)
n=0

Now from (38)—(41) we observe that satisfies the following difference equation:

e?an1v/[n+ 11V[n + 1] = €%a,_1/[n — 1]1V/[n] (42)

That is,
g VT VIn+1]
Gz =€ ¢¢[n+2]! e “
and
a, =0. (44)
Hence,
VIO VI
e2¢>
J[Z_J[Tao
.¢~/[2_\/[? 44¢~/[2_J[0_\/[?¢[T
VAT VAT e VA
.¢J[4_J_a4 6.¢J_J[2_J[O_J_J[?J_
VI6I! V/[6] J_J[TJ[Z_J_J[TJ_

and so on. Thus,
1 [2n-—1]!
JI2nlb J[2n! %

ap, = '@9)
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and
31233=a5="':a2n—l=0-
Thus, fz satisfying (38) has the form

fr = il = aozen@'w o o (45)

To normalise we have

1=(fg, f5) = lao 'EZDE]E”- (46)
Thus, aside from a trivial phase we have
[2n — 1Ju 77
%z[gg[mm ] 47

and the field-strength vector at the origip takes the form

0 _ -1/2 _ —
o I = I

Henceforth, we shall denote this vector as

2n—1n 723 g /20— 10
(E@)=0) [Z | yoeeo (BB a9

6. EXAMPLES

We now calculate homodyne statistics for various vectors under consideration.

6.1. Incoherent Vector

For the incoherent vectors (Das, 2001b) we take the density operator to be

= Z l fa) ¢ (50)

with

pn>0 and anzl.

n=0
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Then we calculate homodyne distributi®{E(¢) = 0) as
P(E(¢) = 0) = (E(¢) = 0, pE(¢) = 0)

=" pl(E(¢) =0, fo)I?
n=0

2
x o In—1p
n;w RO ’ (51)

Zip [Z 2F2;]!1!] }l

n= n=0

6.2. Coherent Vector
For the coherent vectork, (Das, 1998),

fo = eq(ja|?) 2 (52)
&l Z T
We take the density operator to be
p=If)fel,  @=lale® (53)

and calculate homodyne distributi®t{E(¢) = 0) as
P(E(¢) = 0) = (E(¢) =0, pE(¢) = 0)
= (E(®) =0, [f.)(fa|E(p) = 0)
= (E(@) =0, f)I?

[2n — 1]
= ey(lar|?)” [Z 20 ]

(54)

2
= gno [IN— 1o
Zo (]t VIn[T| -

6.3. Coherent Phase Vector
For a coherent phase vectly (Das, 1999b),

fs = @(1BP) Zﬁ”/ At =D e
n=0 )

with |8] < 1 and

o(pp) = Y pin L =D, (56)
n=0
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We take the density operator to be
p = 1) (fsl
and calculate homodyne distributi®f{E(¢) = 0) as
P(E(¢) = 0) = (E(¢) =0, pE(¢) = 0)
= (E(9) =0, [f5)(fs|E(¢) = 0)
= [(E(¢) =0, fp)I?

[2 ]||
= o(IB%)" [Z i }

X\/(q+[01)---(q“+[n—1])
[n]! '

6.4. Kerr Vector
For a kerr vectop (Das, 1999b),

‘1’5 ZeéyN(N—l)fa
o0
=2k
n=0
where
= ey (la?) 2D

S
We take the density operator to be
p= ooy |
and calculate homodyne distributi®{E(¢) = 0) as
P(E(¢) = 0) = (E(¢) = 0, pE(¢) = 0)
= (E(¢) = 0, |95 (¢ |E(9) =
= |(E(®) = 0,¢%)|°

N [io [2F2;]!1!]”}

2 \/ ST

- /[n— 1]
n:Oe " [n]"! kn .

1643

(57)

(58)

(59)

(60)

(61)

(62)
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6.5. Squeezed Vector
For a squeezed vectdg (Das, 2001a),

fs= [Z| 2 [2?2—]”]”] l/zi [2F2;]||]” fon. (63)
We take the density operator to be
p = |fs)(fs| (64)
and calculate homodyne distributi®(E(¢) = 0) as
P(E(¢) = 0) = (E(¢) = 0, pE(¢) = 0)
= (E(¢) =0, f5)(fs|E(¢) = 0)

= |(E(¢) =0, fs|?
a[2n—1]1 © 2n—1n71t
[Z' " ] [ZJ 2! }
n n[ 1]”
n2::0e2¢ i (65)

7. CONCLUSION

In conclusion, we have studied the statistics of direct, heterodyne, and ho-
modyne detection for several vectors under consideration. Using field-strength
eigenvectors we have given a prescription for the measurement of the distribution
using a balanced homodyne detection scheme in the deformed case.
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