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In this paper we study homodyne statistics of some vectors on a deformed Hilbert
space.

1. INTRODUCTION

In a direct detection of statistics (Braunstein, 1990; Braunstein and Caves,
1990) in a single-mode photon field we count the number of photons in the field
mode of interest. The probability for countingn photons, called the photon count
distribution, is given by

Pn = 〈n|ρ|n〉,
where|n〉 is a photon-number eigenstate andρ is a density operator. However,
the direct detection cannot differentiate between the quadratures. All practical
phase-sensitive measurements require a reference beam, to act as a phase refer-
ence, commonly called the local oscillator. This beam has to be phase locked to
the input, otherwise it cannot provide a phase reference to distinguish between the
quadratures. If the local oscillator is resonant with the system field, that is has the
same frequency as the input, then this type of measurement is known ashomodyne
detection. Alternatively, if the local oscillator is detuned, that is, frequency shifted
from the bandwidth of the system field, then this is known asheterodynedetection.
It is usually assumed that the observable measured by the homodyne detector is
one of the field quadratures and that by the heterodyne detector is both the field
quadratures.

The Q function defined by

Q(α) = 〈α|ρ|α〉,
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where|α〉 is a coherent state, provides a normalized phase-space probability dis-
tribution, Q(α)/π , for a quantum system.Q(α) can be measured in a series of
optimized simultaneous measurements of two orthogonal quadrature components,
becauseQ(α)/π gives directly the statistics of such measurements. This means
that in optical frequency detection,Q(α)/π gives the statistics of heterodyne de-
tection that measures orthogonal quadrature components of the statistics of a pair
of homodyne detectors whose local oscillators have relative phases corresponding
to measuring orthogonal quadrature components.

Homodyne detection is a well-established method for measuring phase-
senitive properties of light. Usual process is to superimpose a signal field with a
much stronger local oscillator. As a consequence the resulting field is rather strong
and can be detected with photodiodes. In such a scheme a photocurrent is produced,
which may be treated classically. Nevertheless, from the statistical properties of
this classical current one may get some insight into the nonclassical statistics of
light.

In recent years (Das, 1998, 1999a,b, 2001a,b), we have studied coherent
vectors, phase vectors, coherent phase vectors, kerr vectors, and squeezed vectors
in the setting of a deformed Hilbert space and plan to study here their direct,
heterodyne, and homodyne statistics in this generalized setting. Here, we adopt the
viewpoint of Vogel and coworker (1990, 1991) to study the statistics of different
vectors so far generalized.

The work is organized as follows. In section 2, we give a brief description of
preliminaries and notations. In section 3, we study the statistics of photon count. In
section 4, we describe the statistics of heterodyne detection. In section 5, to study
the statistics of homodyne detection we first find field strength vector and then, in
section 6, through various examples we describe homodyne statistics of different
vectors under consideration. Finally, we give a conclusion.

2. PRELIMINARIES AND NOTATIONS

We consider the set

Hq =
{

f : f (z) =
∑

anzn where
∑

[n]! |an|2 < ∞
}

,

where [n] = 1−qn

1−q , 0 < q < 1.

For f, g∈ Hq, f (z) =∑∞n=0 anzn, g(z) =∑∞n=0 bnzn we define addition and
scalar multiplication as follows:

( f + g) (z) = f (z)+ g(z) =
∞∑

n=0

(an + bn)zn (1)



P1: GCQ/GDP/GIR/GMF P2: GDW/GFU

International Journal of Theoretical Physics [ijtp] PP190-341465 August 17, 2001 18:21 Style file version Nov. 19th, 1999

Homodyne Statistics of a Vector in a Deformed Hilbert Space 1633

and

(λ ◦ f ) (z) = λ ◦ f (z) =
∞∑

n=0

λanzn. (2)

It is easily seen thatHq forms a vector space with respect to usual pointwise
scalar multiplication and pointwise addition by (1) and (2). We observe thateq(z) =∑∞

n=0
zn

[n]! belongs toHq.
Now we define the inner product of two functionsf (z) =∑anzn andg(z) =∑

bnzn belonging toHq as

( f, g) =
∑

[n]! ānbn. (3)

Corresponding norm is given by

‖ f ‖2 = ( f, f ) =
∑

[n]! |an|2 < ∞.
With this norm derived from the inner product it can be shown thatHq is a

complete normed space. HenceHq forms a Hilbert space.
In a recent paper (Das, 1998, 1999a) we have proved that the set{ zn√

[n]!
, n =

0, 1, 2, 3,. . .} forms a complete orthonormal set. If we consider the following
actions onHq

T fn =
√

[n] fn−1,
(4)

T∗ fn =
√

[n+ 1] fn+1,

whereT is the backward-shift and its adjointT∗ is the forward-shift operator on
Hq and fn(z) = zn√

[n]!
then we have shown (Das, 1998, 1999a) that the solution of

the following eigenvalue equation

T fα = α fα (5)

is given by

fα = eq(|α|2)
−1/2

∞∑
n=0

αn

√
[n]!

fn. (6)

We call fα acoherent vectorin Hq.

3. STATISTICS OF PHOTON COUNT

In this section we shall describe statistics of direct detection, that is, the
probability distributionPn of different vectors under consideration.
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3.1. Incoherent Vectors

For the incoherent vectors (Das, 2001b) we take the density operator to be

ρ =
∞∑

n=0

pn| fn〉〈 fn|, (7)

with

pn ≥ 0 and
∞∑

n=0

pn = 1.

Then we calculate photon count distributionPn as

Pn = ( fn, ρ fn) =
∞∑

m=0

pm( fn, fm) ( fm, fn) = pn.

3.2. Coherent Vector

For the coherent vectorsfα (Das, 1998),

fα = eq(|α|2)
−1/2

∞∑
n=0

αn

√
[n]!

fn. (8)

We take the density operator to be

ρ = | fα〉〈 fα|, α = |α|ei θ0 (9)

and calculate the photon count distributionPn as

Pn = ( fn, ρ fn)

= ( fn, | fα〉〈 fα| fn)

= |( fn, fα)|2

= eq(|α|2)−1 |α|2n

[n]!
. (10)

3.3. Coherent Phase Vector

For a coherent phase vectorfβ (Das, 1999b),

fβ = 8(|β|2)−1/2
∞∑

n=0

βn

√
(q + [0] ) · · · (qn + [n− 1])

[n]!
fn, (11)



P1: GCQ/GDP/GIR/GMF P2: GDW/GFU

International Journal of Theoretical Physics [ijtp] PP190-341465 August 17, 2001 18:21 Style file version Nov. 19th, 1999

Homodyne Statistics of a Vector in a Deformed Hilbert Space 1635

with |β| < 1 and

8(|β|2) =
∞∑

n=0

|β|2n (q + [0] ) · · · (qn + [n− 1])

[n]!
. (12)

We take the density operator to be

ρ = | fβ〉〈 fβ | (13)

and calculate the photon count distributionP(n) as

Pn = ( fn, ρ fn)

= ( fn, | fβ〉〈 fβ | fn)

= |( fn, fβ)|2

= 8(|β|2)−1|β|2n (q + [0] ) · · · (qn + [n− 1])

[n]!
. (14)

3.4. Kerr Vector

For a kerr vectorφK
α (Das, 1999b),

φK
α = e

i
2γ N(N−1)
q fα

=
∞∑

n=0

kn fn, (15)

where

kn = eq(|α|2)−1/2 αn

√
[n]!

e
i
2γ [n] ([n]−1)
q . (16)

We take the density operator to be

ρ = ∣∣φK
α

〉〈
φK
α

∣∣ (17)

and calculate the photon count distributionP(n) as

P(n) = ( fn, ρ fn)

= ( fn,
∣∣φK
α

〉〈
φK
α

∣∣ fn
)

= ∣∣( fn, φK
α

)∣∣2
= eq(|α|2)−1 |α|2n

[n]!

∣∣∣ei
2γ [n] ([n]−1)
q

∣∣∣2. (18)
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3.5. Squeezed Vector

For a squeezed vectorfs (Das, 2001a),

fs =
[ ∞∑

n=0

|α|2n [2n− 1]!!

[2n]!!

]−1/2 ∞∑
n=0

αn

√
[2n− 1]!!

[2n]!!
f2n. (19)

We take the density operator to be

ρ = | fs〉〈 fs| (20)

and calculate the photon count distributionP(n) as

P(n) = ( fn, ρ fn)

= ( fn, fs〉〈 fs| fn)

= |( fn, fs)|2

=
[ ∞∑

n=0

|α|2n [2n− 1]!!

[2n]!!

]−1

|α|n [n− 1]!!

[n]!!
. (21)

4. STATISTICS OF HETERODYNE DETECTION

In this section we shall describe statistics of heterodyne detection, that is, the
probability distributionQ(α)/π of different vectors under consideration.

4.1. Incoherent Vector

For the incoherent vectors (Das, 2001b) we take the density operator to be

ρ =
∞∑

n=0

pn| fn〉〈 fn|, (22)

with

pn ≥ 0 and
∞∑

n=0

pn = 1.

Then we calculate phase-space probability distributionQ(α)/π as

Q(α)/π = 1/π ( fα, ρ fα)

= 1/π
∞∑

n=0

pn|( fn, fα)|2

= 1/πeq(|α|2)−1
∞∑

n=0

pn
|α|2n

[n]!
. (23)
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4.2. Coherent Vector

For the coherent vectorsfα′ (Das, 1998),

fα′ = eq(|α′|2)
−1/2

∞∑
n=0

α′ n√
[n]!

fn. (24)

We take the density operator to be

ρ = | fα′ 〉〈 fα′ |, α′ = |α′|ei θ0 (25)

and calculate the phase-space probability distributionQ(α)/π as

Q(α)/π = 1/π ( fα, ρ fα)

= 1/π ( fα, | fα′ 〉〈 fα′ | fα)

= 1/π |( fα, fα′ )|2

= 1/πeq(|α|2)−1eq(|α′|2)−1|eq(ᾱα′)|2. (26)

4.3. Coherent Phase Vector

For a coherent phase vectorfβ (Das, 1999b),

fβ = 8(|β|2)−1/2
∞∑

n=0

βn

√
(q + [0] ) · · · (qn + [n− 1] )

[n]!
fn, (27)

with |β| < 1 and

8(|β|2) =
∞∑

n=0

|β|2n (q + [0] ) · · · (qn + [n− 1] )

[n]!
. (28)

We take the density operator to be

ρ = | fβ〉〈 fβ | (29)

and calculate the phase-space probability distributionQ(α)/π as

Q(α)/π = 1/π ( fα, ρ fα)

= 1/π ( fα, | fβ〉〈 fβ | fα)

= 1/π |( fα, fβ)|2

= 1/π8(|β|2)−1eq(|α|2)−1|8(ᾱβ)|2. (30)
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4.4. Kerr Vector

For a kerr vectorφK
α (Das, 1999b),

φK
α = e

i
2γ N(N−1)
q fα

=
∞∑

n=0

kn fn, (31)

where

kn = eq(|α|2)−1/2 αn

√
[n]!

e
i
2γ [n] ([n]−1)
q . (32)

We take the density operator to be

ρ = ∣∣φK
α

〉〈
φK
α

∣∣ (33)

and calculate the phase-space probability distributionQ(α)/π as

Q(α)/π = 1/π ( fα, ρ fα)

= 1/π
(

fα,
∣∣φK
α

〉〈
φK
α

∣∣ fα
)

= 1/π
∣∣( fα, φK

α

)∣∣2
= 1/πeq(|α|2)−2

∣∣∣∣ ∞∑
n=0

|α|2n

[n]!
e

i
2γ [n]([n]−1)
q

∣∣∣∣2. (34)

4.5. Squeezed Vector

For a squeezed vectorfs (Das, 2001a),

fs =
[ ∞∑

n=0

|α|2n [2n− 1]!!

[2n]!!

]−1/2 ∞∑
n=0

αn

√
[2n− 1]!!

[2n]!!
f2n. (35)

We take the density operator to be

ρ = | fs〉〈 fs| (36)

and calculate the phase-space probability distributionQ(α)/π as

Q(α)/π = 1/π ( fα, ρ fα)

= 1/π ( f{α}, f{s}〉〈 f{s}| fα)

= 1/π |( fα, fs)|2
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= 1/πeq(|α|2)−1

[ ∞∑
n=0

|α|2n [2n− 1]!!

[2n]!!

]−1

×
∣∣∣∣∣ ∞∑

n=0

ᾱ2n

√
[2n]!

αn

√
[2n− 1]!!

[2n]!!

∣∣∣∣∣
2

. (37)

5. STATISTICS OF HOMODYNE DETECTION

Homodyne detection measures a quadrature component which is the field
operator

Ê(φ) = e−iφT − eiφT∗,

whereφ is a phase determined by the phase of the local oscillator. The statistics of
homodyne detection, that is, the probability distributionP(E(φ)) of the quadrature
component is given by

P(E(φ)) = (E(φ), ρE(φ)),

whereE(φ) denotes an arbitrary vector satisfying the equation

(e−iφT − eiφT∗)E(φ) = 0

andρ is a density operator. The operatorsT andT∗ are elaborated in section 2.
It is called a field-strength vectorE(φ). We shall find the probability distribution
at the particular field valueE(φ) = 0. Before we proceed to find the homodyne
statistics of various vectors under consideration we find the field-strength vector
at the originE(φ) = 0.

5.1. Generation of Field-Strength Vector

The field-strength vector at the originE(φ) = 0 is generated by the action of
e−iφT − eiφT∗ on an arbitrary vectorfβ in Hq (Das, 1998), which satisfies the
following equation

(e−iφT − eiφT∗) fβ = 0, (38)

where

fβ(z) =
∞∑

n=0

anzn =
∞∑

n=0

an

√
[n]! fn(z), (39)

or

fβ =
∞∑

n=0

an

√
[n]! fn.
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We have

e−iφT fβ =
∞∑

n=0

e−iφan

√
[n]!T fn

=
∞∑

n=1

e−iφan

√
[n]!

√
[n] fn−1

=
∞∑

n=0

e−iφan+1

√
[n+ 1]!

√
[n+ 1] fn (40)

and

eiφT∗ fβ =
∞∑

n=0

eiφan

√
[n]!T∗ fn

=
∞∑

n=0

eiφan

√
[n]!

√
[n+ 1] fn+1. (41)

Now from (38)–(41) we observe thatan satisfies the following difference equation:

e−iφan+1

√
[n+ 1]!

√
[n+ 1] = eiφan−1

√
[n− 1]!

√
[n] (42)

That is,

an+2 = e2iφ

√
[n]!√

[n+ 2]!

√
[n+ 1]√
[n+ 2]

an (43)

and

a1 = 0. (44)

Hence,

a2 = e2iφ

√
[0]!√
[2]!

√
[1]√
[2]

a0

a4 = e2iφ

√
[2]!√
[4]!

√
[3]√
[4]

a2 = e4iφ

√
[2]!
√

[0]!√
[4]!
√

[2]!

√
[3]
√

[1]√
[4]
√

[2]
a0

a6 = e2iφ

√
[4]!√
[6]!

√
[5]√
[6]

a4 = e6iφ

√
[4]!
√

[2]!
√

[0]!√
[6]!
√

[4]!
√

[2]!

√
[5]
√

[3]
√

[1]√
[6]
√

[4]
√

[2]
a0

and so on. Thus,

a2n = en(2iφ) 1√
[2n]!

[2n− 1]!!√
[2n]!!

a0
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and

a1 = a3 = a5 = · · · = a2n−1 = 0.

Thus, fβ satisfying (38) has the form

fβ =
∞∑

n=0

an

√
[n]! fn = a0

∞∑
n=0

en(2iφ)

√
[2n− 1]!!

[2n]!!
f2n. (45)

To normalise we have

1= ( fβ , fβ) = |a0|2
∞∑

n=0

[2n− 1]!!

[2n]!!
. (46)

Thus, aside from a trivial phase we have

a0 =
[ ∞∑

n=0

[2n− 1]!!

[2n]!!

]−1/2

(47)

and the field-strength vector at the originfβ takes the form

fβ =
[ ∞∑

n=0

[2n− 1]!!

[2n]!!

]−1/2 ∞∑
n=0

en(2iφ)

√
[2n− 1]!!

[2n]!!
f2n. (48)

Henceforth, we shall denote this vector as

(E(φ) = 0)=
[ ∞∑

n=0

[2n− 1]!!

[2n]!!

]−1/2 ∞∑
n=0

en(2iφ)

√
[2n− 1]!!

[2n]!!
f2n. (49)

6. EXAMPLES

We now calculate homodyne statistics for various vectors under consideration.

6.1. Incoherent Vector

For the incoherent vectors (Das, 2001b) we take the density operator to be

ρ =
∞∑

n=0

pn| fn〉〈 fn|, (50)

with

pn ≥ 0 and
∞∑

n=0

pn = 1.
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Then we calculate homodyne distributionP(E(φ) = 0) as

P(E(φ) = 0) = (E(φ) = 0, ρE(φ) = 0)

=
∞∑

n=0

pn|(E(φ) = 0, fn)|2

=
∞∑

n=0

pn

[ ∞∑
n=0

[2n− 1]!!

[2n]!!

]−1
∣∣∣∣∣ ∞∑

n=0

einφ

√
[n− 1]!!

[n]!!

∣∣∣∣∣
2

. (51)

6.2. Coherent Vector

For the coherent vectorsfα (Das, 1998),

fα = eq(|α|2)−1/2
∞∑

n=0

αn

√
[n]!

fn. (52)

We take the density operator to be

ρ = | fα〉〈 fα|, α = |α|ei θ0 (53)

and calculate homodyne distributionP(E(φ) = 0) as

P(E(φ) = 0) = (E(φ) = 0, ρE (φ) = 0)

= (E(φ) = 0, | fα〉〈 fα|E(φ) = 0)

= |(E(φ) = 0, fα)|2

= eq(|α|2)−1

[ ∞∑
n=0

[2n− 1]!!

[2n]!!

]−1

×
∣∣∣∣∣ ∞∑

n=0

einφ

√
[n− 1]!!

[n]!!

αn

√
[n]!

∣∣∣∣∣
2

. (54)

6.3. Coherent Phase Vector

For a coherent phase vectorfβ (Das, 1999b),

fβ = 8(|β|2)−1/2
∞∑

n=0

βn

√
(q + [0]) · · · (qn + [n− 1])

[n]!
fn (55)

with |β| < 1 and

8(|β|2) =
∞∑

n=0

|β|2n (q + [0]) · · · (qn + [n− 1])

[n]!
. (56)
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We take the density operator to be

ρ = | fβ〉〈 fβ | (57)

and calculate homodyne distributionP(E(φ) = 0) as

P(E(φ) = 0) = (E(φ) = 0, ρE(φ) = 0)

= (E(φ) = 0, | fβ〉〈 fβ |E(φ) = 0)

= |(E(φ) = 0, fβ)|2

= 8(|β|2)−1

[ ∞∑
n=0

[2n− 1]!!

[2n]!!

]−1
∣∣∣∣∣ ∞∑

n=0

einφ

√
[n− 1]!!

[n]!!
βn

×
√

(q + [0]) · · · (qn + [n− 1])

[n]!

∣∣∣∣∣
2

. (58)

6.4. Kerr Vector

For a kerr vectorφK
α (Das, 1999b),

φK
α = e

i
2γ N(N−1)
q fα

=
∞∑

n=0

kn fn, (59)

where

kn = eq(|α|2)−1/2 αn

√
[n]!

e
i
2γ [n]([n]−1)
q . (60)

We take the density operator to be

ρ = ∣∣φK
α

〉〈
φK
α

∣∣ (61)

and calculate homodyne distributionP(E(φ) = 0) as

P(E(φ) = 0) = (E(φ) = 0, ρE(φ) = 0)

= (E(φ) = 0,
∣∣φK
α

〉〈
φK
α

∣∣E(φ) = 0)

= ∣∣(E(φ) = 0,φK
α

)∣∣2
=
[ ∞∑

n=0

[2n− 1]!!

[2n]!!

]−1
∣∣∣∣∣ ∞∑

n=0

einφ

√
[n− 1]!!

[n]!!
kn

∣∣∣∣∣
2

. (62)
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6.5. Squeezed Vector

For a squeezed vectorfs (Das, 2001a),

fs =
[ ∞∑

n=0

|α|2n [2n− 1]!!

[2n]!!

]−1/2 ∞∑
n=0

αn

√
[2n− 1]!!

[2n]!!
f2n. (63)

We take the density operator to be

ρ = | fs〉〈 fs| (64)

and calculate homodyne distributionP(E(φ) = 0) as

P(E(φ) = 0) = (E(φ) = 0, ρE(φ) = 0)

= (E(φ) = 0, fs〉〈 fs|E(φ) = 0)

= |(E(φ) = 0, fs|2

=
[ ∞∑

n=0

|α|2n [2n− 1]!!

[2n]!!

]−1[ ∞∑
n=0

[2n− 1]!!

[2n]!!

]−1

×
∣∣∣∣ ∞∑

n=0

e2inφαn [2n− 1]!!

[2n]!!

∣∣∣∣2. (65)

7. CONCLUSION

In conclusion, we have studied the statistics of direct, heterodyne, and ho-
modyne detection for several vectors under consideration. Using field-strength
eigenvectors we have given a prescription for the measurement of the distribution
using a balanced homodyne detection scheme in the deformed case.
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